Lista de probabilidades gabarito



Baixar 31.24 Kb.
Encontro26.01.2018
Tamanho31.24 Kb.




LISTA DE PROBABILIDADES - GABARITO
1) Considere o lançamento de um dado. Calcule a probabilidade de:
a) Sair o número 3.
Solução. Temos U = {1, 2, 3, 4, 5, 6} [n(U) = 6] e A = {3} [n(A) = 1]. Portanto, a probabilidade procurada será igual a P(A) =

b) Sair um número par.


Solução. Agora o evento é A = {2, 4, 6} com 3 elementos; logo a probabilidade procurada será P(A) =

c) Sair um múltiplo de 3.



Solução. O evento A = {3, 6} com 2 elementos. Logo a probabilidade será P(A) =
2) Considere o lançamento de dois dados. Calcule a probabilidade de:
a) Sair a soma 8
Solução. Observe que neste caso, o espaço amostral U é constituído pelos pares ordenados (i,j), onde i = número no dado 1 e j = número no dado 2. É evidente que teremos 36 pares ordenados possíveis do tipo (i, j) onde i = 1, 2, 3, 4, 5, ou 6. O mesmo ocorrendo com j.
As somas iguais a 8, ocorrerão nos casos: (2,6),(3,5),(4,4),(5,3),(6,2). Portanto, o evento "soma igual a 8" possui 5 elementos. Logo, a probabilidade será igual a P(A) =

b) Sair a soma 12.


Solução. Neste caso, a única possibilidade é o par (6,6). Portanto, a probabilidade procurada será igual a P(A) =
3) Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule as probabilidades seguintes:
a) Sair bola azul.
Solução.
b) Sair bola vermelha.
Solução.

c) Sair bola amarela.


Solução.

4) Em uma certa comunidade existem dois jornais J e P. Sabe-se que 5000 pessoas são assinantes do jornal J, 4000 são assinantes de P, 1200 são assinantes de ambos e 800 não lêem jornal. Qual a probabilidade de que uma pessoa escolhida ao acaso seja assinante de ambos os jornais?


Solução. Precisamos calcular o número de pessoas do conjunto universo, ou seja, nosso espaço amostral. Teremos:

n(U) = N(J U P) + N.º de pessoas que não lêem jornais.

n(U) = n(J) + N(P) – N(J Ç P) + 800

n(U) = 5000 + 4000 – 1200 + 800

n(U) = 8600

Portanto, a probabilidade procurada será igual a:

P = 1200/8600 = 12/86 = 6/43.

Logo, p = 6/43 = 0,1395 = 13,95%.

OBS. A interpretação do resultado é a seguinte: escolhendo-se ao acaso uma pessoa da comunidade, a probabilidade de que ela seja assinante de ambos os jornais é de aproximadamente 14%.(contra 86% de probabilidade de não ser).
5) Uma urna possui cinco bolas vermelhas e duas bolas brancas. Calcule as probabilidades de:

a) Em duas retiradas, sem reposição da primeira bola retirada, sair uma bola vermelha (V) e depois uma bola branca (B).


Solução. Lembrando a fórmula:, temos:

(5 bolas vermelhas de um total de 7). Supondo que saiu bola vermelha na primeira, ficaram 6 bolas na urna. Calculamos, então Substituindo na fórmula temos:

b) Em duas retiradas, com reposição da primeira bola retirada, sair uma bola vermelha e depois uma bola branca.


Solução. Com a reposição da primeira bola retirada, os eventos ficam independentes. Neste caso, a probabilidade será calculada como:

6) Ao se retirar uma carta do baralho, qual a probabilidade de ocorrer uma dama?


Solução. O espaço amostral possui 52 elementos (um baralho tem cinqüenta e duas cartas). O evento desejado (uma dama) possui 4 elementos (ouros, copas, paus, espadas). Logo, a probabilidade procurada é:

7) Suponha que uma caixa possui duas bolas pretas e quatro verdes, e, outra caixa possui uma bola preta e três bolas verdes. Passa-se uma bola da primeira caixa para a segunda, e retira-se uma bola da segunda caixa. Qual a probabilidade de que a bola retirada da segunda caixa seja verde?


Solução. Este problema envolve dois eventos mutuamente exclusivos, quais sejam:
* Ou a bola transferida é verde ou a bola transferida é preta.

1ª possibilidade: a bola transferida é verde.

Probabilidade de que a bola transferida seja verde: (4 bolas verdes em 6).

Portanto, a probabilidade que saia BOLA VERDE na 2ª caixa, supondo-se que a bola transferida é de cor VERDE, será igual a: (a segunda caixa possui agora, 3 bolas verdes + 1 bola verde transferida + 1 bola preta, portanto, 4 bolas verdes em 5).

Pela regra da probabilidade condicional, vem:

2ª possibilidade: a bola transferida é preta.
Probabilidade de que a bola transferida seja preta: (2 bolas pretas e 4 verdes).

Portanto, a probabilidade que saia BOLA VERDE, supondo-se que a bola transferida é de cor PRETA, será igual a: (2ª caixa = 1 bola preta + 3 bolas verdes + 1 bola preta).

Daí, vem:

Finalmente vem:
8) Uma caixa contém três bolas vermelhas e cinco bolas brancas e outra possui duas bolas vermelhas e três bolas brancas. Considerando-se que uma bola é transferida da primeira caixa para a segunda, e que uma bola é retirada da segunda caixa, podemos afirmar que a probabilidade de que a bola retirada seja da cor vermelha é:


Solução.
a) Considere que 1º transferiu uma vermelha:P(V) e sorteou vermelha na segunda caixa: P(V/V’) =
b) Considere que 1º transferiu uma vermelha:P(B) e sorteou vermelha na segunda caixa: P(V/B) =
Finalize somando os resultados: Letra C.


a)

b)

c)

d)

e)



9) Uma máquina produziu 50 parafusos dos quais 5 eram defeituosos. Retirando-se ao acaso, 3 parafusos dessa amostra, determine a probabilidade de que os 3 parafusos sejam defeituosos.

Solução. Podemos selecionar 3 parafusos dentre 50 de formas. Dentre as 5 defeituosas, podemos retirar de formas. Logo,
10) FEI-SP – Uma urna contém 10 bolas pretas e 8 bolas vermelhas. Retiramos 3 bolas sem reposição. Qual é a probabilidade de as duas primeiras serem pretas e a terceira vermelha?

Solução. Como não há reposição, a cada retirada diminui o número de bolas na urna. Os eventos são independentes. Veja a tabela.




retirada

2ª retirada

3ª retirada




preta

preta

vermelha




10

9

8

total

18

17

16


Logo
11) FMU-SP – Uma urna contém 5 bolas vermelhas e 4 pretas; dela são retiradas duas bolas, uma após a outra, sem reposição; a primeira bola retirada é de cor preta; Qual a probabilidade de que a segunda bola retirada seja vermelha?
Solução. Repare que esse problema difere do anterior, pois não supõe uma composição de resultados. Se a pergunta fosse: “Qual a probabilidade de a primeira ser preta e segunda ser vermelha?”, a solução seria:
12) Um juiz de futebol possui três cartões no bolso. Um é todo amarelo, outro todo vermelho e o terceiro é vermelho de um lado e amarelo do outro. Num determinado lance, o juiz retira ao acaso um cartão do bolso e o mostra a um jogador. Qual a probabilidade de a face que o juiz vê ser vermelha e de a outra face, mostrada ao jogador ser amarela.
Solução. A probabilidade de sortear o cartão AV (duas cores) é Uma vez sorteado esse cartão, queremos que o juiz veja a face vermelha Logo a probabilidade de ocorrerem essas duas situações é:

Compartilhe com seus amigos:


©ensaio.org 2017
enviar mensagem

    Página principal