Mini baja fesurv. IV copa jma 2014

Baixar 0.55 Mb.
Tamanho0.55 Mb.
1   2   3   4   5

7.3.1 Rules Requirements and Restrictions Technical Inspection

All SAE Baja vehicles must pass a technical inspection before they are

permitted to compete. Once a vehicle has passed technical inspection it must

remain in “as approved” condition throughout the competition. Repairs must be

made with identical parts. Not observing this rules may mean disqualification

from the competition; final judgment rest with the National Technical Inspectors. Required Modifications

All installations and construction are subject to the approval of the National

Technical Inspectors, who may require modifications at their discretion. All

competitors should be prepared to note these modifications during technical



9/40 Equivalent Level of Safety (ELOS)

Determination of ELOS is the principle used to accept alternative configurations

that may not meet strictly one or more safety requirements but presents an

equivalent, or exceeds the level of safety intended by the safety requirement.

Only Safety Inspectors may determine an ELOS, which must be substantiated

by engineering data such as analysis, tests, theoretical evidences or even

engineering judgment.

Determination of ELOS may also be made by Safety Inspectors to accept minor

discrepancies without a recheck or further modifications on the vehicle.

Teams are encouraged to present and discuss any proposed ELOS with the

Safety Inspectors before the competition. (emenda 2, 01/Fev/2011) Unsafe Vehicles

Any vehicle exhibiting handling or other vehicle dynamics that are deemed

unsafe or unstable by the technical inspectors will not be permitted to

participate in the dynamic events. The vehicle dynamic responses are going to

be checked during the comfort event and are going to be observed during all

the competition. (emenda 2, 01/Fev/2011)


7.4.1 Objective

The purpose of the roll cage is to provide a minimal three-dimensional space

surrounding the driver. The cage must be designed and fabricated to prevent

any failure of its integrity. The cage must be large enough for:

1.) The driver’s helmet to be 15,24 cm (6 inches) away from a straightedge

applied to any two points on the cockpit of the car, excluding the driver’s seat

and the rear driver safety supports.

2.) The driver’s torso, knees, shoulders, elbows, hands, and arms must have a

minimum of 7.62 cm (3 in) of clearance from the envelope created by the

structure of the car (This is tested by applying a straight-edge between any two

points on the outside edges of the SIM and RHO, less the roll cage padding)

7.4.2 Roll Cage Requirements Elements of the Roll Cage

The elements of the roll cage that must meet the material specification per 7.4.4


Rear Roll Hoop (RRH) Rule

Roll Hoop Overhead members (RHO) Rule

Lower Frame Side members (LFS) Rule

Front Bracing members (FBM) Rule

Lateral Cross member (LC) or (FLC)

Any part to which safety belts are attached.

Additional members listed below are required:

Lateral Diagonal Bracing (LDB) Rule

Side Impact members (SIM) Rule

Under seat member (USM) Rule

Fore-Aft Bracing members (FAB) Rule

Rear lateral cross member (RLC) Rule

(emenda 2, 01/Fev/2011)

These additional members must be steel and are required to have only

minimum thickness of .89 mm (.035 in) and minimum outside diameter of 25.4

mm (1.0 inch).

Reference points: See drawings in this section.

NOTE 1: When minimal dimensions are given that is to the centerline of the

members, and when a clearance for the driver is given, it is defined by the

outside edges of the roll cage members less the padding installed.

NOTE 2: All roll cage members having a bend radius greater than 15.2 cm (6

inches) may NOT be longer than 71.1 cm (28 inches) unsupported.

DEFINITION: Driver - For the purposes of this section "driver" refers to the

team's largest driver and the 95-percentile male properly suited and wearing a

helmet. Rear Roll Hoop (RRH)

The RRH is made up of a maximum of four sections, two LC at highest and

lowest points, and two continuous, no break vertical members; this may be one

continuous hoop/tube. The driver’s seat may not intrude into the plane of the

RRH. (This check shall be made considering the maximum deformation of seat

structure especially on cases when the seat is integrated to the structure). The

upper junctions in straight tube construction shall define points BR and BL. If

bent tube construction is used, points BR and BL will occur at the upper end of

each bend. (See Figure 7-1) The RRH shall extend upward vertically +/- 20

degrees from points A to points B. The RRH must also be a minimum of 73.6

cm (29 in) wide at 68.6 cm (27 in) above the driver’s seat (Checked by


Figure 7-1 – RC1 Rear Roll Hoop Lateral Diagonal Bracing (LDB)

Lateral bracing for the Rear Roll Hoop will begin at a point along the vertical

portion of the RRH within 12.7 cm (5 inches) vertically of point BL or BR and

extend diagonally to a point no farther than 12.7 cm (5 inches) above point AR

or AL respectively. (See Figure 7-2) The vertical angle between the RRH and

the LDB must be no less than 20 degrees. Lateral bracing may consist of one,

two or more members.

Figure 7-2 – RC2

Figure 7-3 shows bracing solutions that do not meet the requirements.

Figure 7-3 - Bracings that do not meet requirements Roll Hoop Overhead members (RHO)

Roll Hoop Overhead members shall join the RRH within 5.1 cm (2 inches)

vertically or laterally of points B and extend generally horizontal to points C. The

RHO shall be located above the driver’s seat by a minimum of 104.1 cm (41

inches). Points C should be located forward of the driver’s seat by a minimum of

30.5 cm (12 inches) as defined in section 7.4.3. (See Figure 7-4)

Points CR and CL shall be joined by a lateral cross member (LC) (See Figure 7-


Note: RHO and FBM (see section members are required to be

constructed on a single continuous part connecting points B and SF with a bend

at point C.

Figure 7-4 - RC3 (emenda 2, 01/Fev/2011) Lower Frame Side members (LFS)

Lower frame side members shall join the lower RRH and LC and extend to

points forward of the driver’s heel to a front lateral cross member. (FLC) (See

Figure 7-5)

Figure 7-5 – RC4 (emenda 2, 01/Fev/2011) Side Impact members (SIM)

Side impact members shall join the RRH at points S and extend generally

horizontal to points SF forward of the driver’s toes. (See Figure 7-5) The SIM

shall be between 20,3 cm (8 inches) and 35,6 cm (14 inches) (as measured

vertically) above the lowest point on the seat in contact with the driver. (See

Figure 7-4)

NOTE: The driver’s feet must be behind the plane created by points AFR,L and

SFR,L. A lateral cross member LC is required between SFR,L. If the tube

between SFR,L is below the driver’s toes then an additional bar will be required

above the driver’s toes (The intent of this is to protect the driver’s feet from a tire

intrusion). Under seat member (USM)

An under seat member (USM) shall join both LFS members at a location just

below the driver where the template intersects the seat bottom as per Figure 7-

4. A tolerance of 5.1 cm (2 inches) can be applied but only forward of that point.

It must be positioned in such a way to prevent the driver from passing through

the plane of the LFS in the event of seat failure. (emenda 2, 01/Fev/2011) Front Bracing members (FBM)

Front bracing members shall join the RHO, the SIM and the LFS. (See Figure 7-

6) The upper Front Bracing members (FBMUP) should extend downward and

forward and join points C on the RHO to the SIM at or behind points SF

(Recommended max. 5.1 cm (2 inches) behind). Observe also the note on item

The angle between the FBMUP and the vertical should be less than 45 degrees.

(emenda 2, 01/Fev/2011)

Figure 7-6 - RC5 Fore-Aft Bracing members (FAB)

Fore-Aft bracing members shall be provided for the cage using either of the

methods defined below. Regardless of bracing system choice, if applicable, the

whole engine compartment including the fuel tank shall be involved by roll cage

structural members. (emenda 2, 01/Fev/2011) Front Fore-Aft Bracing

Front FABUP shall extend generally downward from points D and join the FBMUP

to the SIM at points E. The angle between the Front FABUP and the FBMUP shall

be at least 30 degrees. (See Figure 7-7).

Figure 7-7 - RC6

Front FABLWR must join points E and the LFS (See Figure 7-7). The angle

between the Front FABUP and the Front FABLWR must not be greater than 15

degrees in a side view. If two FABLWR members are needed, the angle between

the two members must not be greater than 90 degrees. (See Figure 7-8).

(emenda 2, 01/Fev/2011)

Figure 7-8 – RC7 Rear Bracing

From a side view (See Figure 7-9) the construction must be entirely of

contiguous triangles, with the maximum length of any member not to exceed

81.3 cm (32 inches) between attachment points. Minimum angle between any

triangle members shall be 25 dg. If bent tubes are used as triangles members,

they shall not exceed 71.1 cm (28 inches). Only continuous radii will be


Rear bracing must include as a minimum one FABUpper, one FABMid (a generally

horizontal brace per side connecting FABUp or FABLwr to the RRH, at +/- 5.1 cm

(2 inches) from point S), and one FABLower. Additionally, at least one straight

rear lateral cross member (RLC) must connect the left and right sides of the

rear bracing, attached within 38.1 cm (15 inches) of the center of the outer

perimeter (as viewed from the side) of the rear bracing. (See Figure 7-9).

Rear bracing must attach within 5.1 cm (2 inches) of Br and Bl, and extend

rearward beyond all engine components. The lowest member (FABLwr) shall

connect within 5.1 cm (2 inches) max. of point A to the RRH. The lower

attachments (below Sr and Sl) must be connected directly to the RRH (may not

be inboard). (See Figure 7-9).

Figure 7-9 – Rear Bracing

NOTE: Teams are allowed to apply rear bracing solutions with bigger

tolerances for attachments to points S and A (exceeding 5.1 cm – 2 inches),

provided that it can be demonstrated either analysis or by test on a

comparative basis that the proposed structure exceeds or present equivalent

safety level to that required by this rule. A substantiation report shall be

presented annexed to the Roll Cage Specification Sheet and its approval will be

on discretion of National Technical Inspectors. (emenda 2, 01/Fev/2011) Final Judgment

The rules are considered a minimum but the final judgment will rest with the

National Technical Inspectors. If during the event, any frame shows signs of

yield and/or failure, the car will be removed from competition until the technical

inspectors confirm that the frame complies with the rules again.

COMMENT: Note that in all cases, especially on bent or interrupted tubes

constructions, technical inspectors may require additional bracing if they feel the

roll cage does not offer adequate protection. Any tubes showing deformations

from construction bending procedures, cracks, or signs of bad welding

conditions, do not comply with the rules. (emenda 2, 01/Fev/2011)

7.4.3 Driver Head Clearance

For driver head clearance, the roll cage must extend a minimum of 104.1 cm

(41 inches) above the seating lower contact point (surface) to the bottom of the

upper roll cage tubes measured vertically using the Template in Figure 7-10.

The template radiuses bottom should be placed in the joint of the seat base and

the seat backrest and positioned vertically. The template “tee” top describes the

projection of the required clearance height forward and rearward. While the

template fixes the clearance height forward, the clearance height rearward must

be extended in each design over the helmet top of a seated and secured driver.

Taller drivers may be accommodated by lengthening the template vertical

member and raising the entire clearance height envelope above the 104.1 cm

(41 inches) minimum. Head Clearance - Minimum

In all cases, a minimum of 15,2 cm (6 inches) vertical clearance must be

provided from the helmet top of the team’s tallest driver to the bottom of the roll

cage top tubes or members.

Figure 7-10 – Roll Cage Design

7.4.4 Roll Cage & Bracing Materials

The material used for entire required roll cage members specified in

(RRH, RHO, LFS, FBM, LC, FLC and any part to which safety belts are

attached) must, at a minimum, be:

(a) Circular steel tubing with an outside diameter of 25.4 mm (1 inch) and a wall

thickness of 3,05 mm (0.120 inch) and a carbon content of at least 0.18 %.


(b) Steel members with at least equal bending stiffness and bending strength to

the tube specified on item (a) above provided that the wall thickness is equal or

bigger than 1.57 mm (.062 inch).

NOTE: The use of alloy steel does not allow the wall thickness to be thinner

than 1.57 mm (.062 inch).

The bending stiffness and bending strength have to be calculated about an axis

that gives the lowest value. Bending stiffness is proportional by the EI product

and bending strength is given by the value of SyI/c, (for 1018 steel the values

are; Sy= 370 MPa (53.7 ksi) E=205 GPa (29,700 ksi).

E = the modulus of elasticity;



I = the second moment of area for the cross section about the axis giving the

lowest value;

Sy = the yield strength of material in units of force per unit area;

c = the distance from the neutral axis to the extreme fiber.

NOTE: Teams are required to provide the calculation of bending stiffness and

bending strength for the tube used. This analysis, including all data requested

on section, must be attached to the Roll Cage Specification Sheet (See

ANEXO 7-1).


All teams must bring a copy of the Baja SAE Roll Cage Specification Sheet

(See ANEXO 7-1) to the National Technical Inspectors during technical

inspection. Complete roll cage specifications must be supplied with the Roll

Cage Specification Sheet. Teams that do not submit a Roll Cage Specification

Sheet will not be allowed to compete. Roll Cage Padding

Any portion of the roll bar, roll bar bracing, SIM, or frame (excluding RRH)

between the weld joints which would be contacted by the driver, must be

covered by a resilient material such as Polyethylene® (pipe insulation) or other

similar material, with a minimum thickness of 12 mm (0.5 inch). All welded joints

must be clear of padding for 2.5 cm (1 in) along each tube to permit inspection

of the weld. Head Restraint

A head restraint must be provided on the car to limit rearward motion of the

head in case of an accident. The restraint must have a minimum area of 232 sq.

cm (36 sq. inches), be padded, with a non-resilient, energy absorbing material

such as Ethafoam® or Ensolite®. There must be a minimum thickness of 3.8

cm (1.5 inches), and be located no more than 2.5 cm (1 inch) away from the

helmet in the uncompressed state. The head restraint must meet the above

requirements for all drivers.

Head restraint pad positioning shall take into account the helmet contact point

travel during operation. Inspection Holes

The National Technical Inspectors will instruct the students where to drill two

4.5mm (.18 inch) diameter holes during initial tech inspection. Sharp Edges on Roll Cage - Prohibited

All sharp edges which might endanger the driver, crew, officials and safety staff

must be eliminated by radiusing, shielding and/or padding. This includes

brackets, gussets, sheet stock, fastener ends, clamps, “tie-raps” or other

features accessible during servicing, judging or competition impact or roll over. Materials - Documentation

Teams are required to bring with them documentation (invoices, bills, etc.) of

the materials used in the roll cage and bracing. Teams must give this

information as an attachment to the Roll Cage Specification Sheet.

7.4.5 Bolted Roll Cages

Bolted roll cages are acceptable only if the following requirements are met:

a) Flanges or tabs must be twice (2X) the thickness of the tube structures,

made of the same material type. They must be properly welded to each tubing

part to be joined;

b) Flange mounts must be twice (2X) the diameter of the attached tubing, flush

mated, with no gap between the faces greater than 0.07 mm (0.003) inches; No

flange mounts will be allowed inside the cockpit area, since they might hurt the

driver on an accident.

c) Tab mounts must be dual, parallel and on each side of the tubing to which

they are welded, having a welded length of at least twice (2X) the diameter of

the adjoined. Tubing held by bolts must be reinforced such that the area

through which the bolt passes cannot be compressed from tightening or impact.

Tab mounts inside the cockpit area are not recommended and will be submitted

to judgment regarding to the risk of driver’s injury. Unsatisfactory solutions will

demand changes.

d) Bolted joints shall preserve the stiffness and strength of original continuous

structural part. May a given application be deemed insecure changes will be



7.5.1 Design Objective

The cockpit must be designed to (1) protect the driver and (2) permit easy driver

exit in an emergency.

7.5.2 Driver Exit Time

Maximum time for a driver to exit the vehicle is five (5) seconds. Teams should

be prepared to demonstrate this requirement with any driver.



Exit time begins with the driver in the fully seated position, hands in driving

position on the connected steering wheel, and wearing the required driver

equipment. Exit time will stop when the driver has both feet on the ground.

Driver’s exit time must be demonstrated by a team driver, or drivers selected by

the technical inspectors.

7.5.3 Firewall

A firewall between the cockpit and the engine and fuel tank compartment is

mandatory; it must cover the area between the lower and upper lateral cross

members (LC). This firewall must be metal, at least 0.508 mm (0.020 inches)

thick, and must completely separate the engine compartment and fuel tank from

the cockpit. Cutouts in the firewall are allowed, but they need to have grommets

or boots to prevent liquids or flame to enter the cockpit. Front or Mid-engine Cars

If the engine is not placed in the rear of car then it must meet the following


a) Gas tank must be in a sealed container that prevents fuel from leaking in the

event of gas tank failure.

b) Splash shields must prevent fuel from being poured anywhere in the cockpit

area during fueling. (See rule 7.8.4).

c) Engine must be completely enclosed by metal shields to protect the driver in

the event of an engine failure, shielding must meet guarding requirements (See

rule 7.11.1).

d) Driver must be able to still egress from either side of the vehicle.

e) The exhaust must not exit towards the driver and must be shielded.

7.5.4 Body Panels

The cockpit must be fitted with body panels that cover the area between the

lower frame side member and the side impact member. No gaps can exist that

are larger than 6.35 mm (0.25 inches). These panels must be made of plastic,

fiberglass, metal or similar material. They must be designed to prevent debris

and foreign object intrusion into the driver compartment. Expanded metal, fabric

or perforated panels are not allowed. The panels shall be mounted securely to

the frame using sound engineering (zip ties, Velcro, Silver tape, and similar are

not recommended).

7.5.5 Belly Pan

The cockpit should be fitted with a belly pan over the entire length so the driver

cannot contact the ground and is protected from debris while seated normally.

Belly pan material must be metal, fiberglass, plastic, or similar material. They

must be designed to prevent debris and foreign object intrusion into the driver

compartment. Expanded metal, fabric, or perforated panels are not allowed.

7.5.6 Leg and Foot Shielding

All steering or suspension links exposed in the cockpit must be shielded. (Metal

shields are strongly recommended). The shielding must prevent the driver’s

legs and feet from coming in contact, or becoming entangled during operation

or a failure. No gaps can exist that are larger than 0.25 inches. The driver’s feet

must be completely within the roll cage.

7.5.7 Top cover (Roof)

The top cover is normally applied for style reasons and supports some of the

vehicle identification numbers. On a roll-over the panels can protrude inside the

cockpit or get loose exposing sharp edges. The application shall follow sound

engineering practices regarding to shape and fixations. Panels shall be

positioned as flush as possible with the roll hoop overhead members and be

made of flexible plastic materials (PVC, etc) (Figure 7-11). In case the original

part is lost on a roll-over the replacement one shall also meet these


Recommended (thin plastic - flexible) Not recommended (rigid)

Figure 7-11 – Top cover design

7.5.8 Kill Switches

Each vehicle must be equipped with two (2) easily accessible positive kill

switches effecting the ignition and entire electrical system of the car. These

switches must also disconnect an auxiliary fuel pump if fitted. As an exception,

the brake light must be independent from the kill switch and remain operable at

all times.


23/40 Kill Switch – Type

a) Cockpit Switch – The kill switch must not be a momentary switch and must

not require sustained action by the driver.

b) External Switch – Must be an emergency style push button kill switch that

when pushed will remain in the kill position. Kill Switch – Locations and Orientation

a) Cockpit Switch – The cockpit switch must be located in the front of the

cockpit within easy reach of the driver when strapped into the seat. The switch

may not be mounted on a removable steering wheel assembly.

b) External Switch – The external switch must be mounted on the driver’s right

side of the vehicle, on a panel between RRH and rear bracing within the red

area, and behind, the plane of the main roll hoop (RRH) (see Figure 7-12). The

switch shall not be installed below 117.8 mm (7 inches) from point B and must

be within easy reach of track workers. The external switch must be oriented with

“LIGA” in the out position and “DESLIGA” in the in position. The switch must be

mounted rigidly, with no sharp edges in that area.

Figure 7-12 – Kill Switch Kill Switch - Labels

Both switches must be clearly labeled as the “CHAVE GERAL.” The cockpit

switch must also have “LIGA” and “DESLIGA” positions labeled. Labels must be

resistant to water or all other environmental conditions found during the

competition. They shall clearly demonstrate switching on and off procedures. Kill Switch – Wiring

All wiring to kill switches must be sealed, protected or securely attached to the

frame to prevent the wires from being entangled with the driver or obstacles.

Sound engineering practices must be used.



7.5.9 Fire Extinguisher – Size and Location

Each vehicle must have at least one fire extinguisher with a minimum UL rating

of 5 B-C.

It must be mounted in the cockpit below driver’s head, with at least the top half

above the side impact member on the right side of the firewall and be easily

accessible by course workers. The fire extinguisher cannot be mounted behind

or inside of the body panels. The fire extinguisher mount must be metal with a

draw latch and must be securely fastened to the vehicle frame. Mountings must

be designed to resist shaking loose over rough terrain, while allowing the

course workers to remove it easily if necessary. (Checks to be performed with

pilot seated)

It is strongly recommended for the teams to have an identical additional fire

extinguisher. It will be used as a replacement if needed.

All fire extinguishers must be equipped with a manufacturer installed dial

pressure; the gauge must be readable by the National Technical Inspectors.

Fire extinguishers must be labeled with school name and vehicle number.

7.5.10 Throttle

Only foot operated throttle controls are allowed. A wide-open throttle stop must

be mounted at the pedal. Mechanical, hydraulic or other throttle controls must

be designed to return to idle-stop in the event of a failure. Throttle cable cannot

be bare from the forward mounting point to the firewall. Foot pedals must be

positioned so as to avoid foot entrapment in any position. Throttle Extensions

Teams may not add any type of extension to either the control surfaces or to the

driver in order to operate the vehicle. For example, drivers may not add blocks

of wood to their feet so that they can reach the controls of the vehicle.


7.6.1 Minimum Four Strap System Required

A minimum of a four (4) strap restraint system consisting of a lap belt and two

over-the-shoulder belts is mandatory. Each shoulder strap must be joined to the

cage through a strap looped around the cage member and cinched with an

appropriate adjuster buckle if provided as such by the manufacturer. Means

must be provided to maintain the lateral position of the looped strap. “Y” type

harnesses in which a single strap becomes two over-the-shoulder straps are not

allowed. All belts must meet either SFI specification 16.1 or 16.5, and must be

in good condition. If belts according to SFI spec 16.5 are used the straps shall

be 76.2 mm (3 inches) wide minimum. Areas through which the belts pass must

be grommetted to prevent chafing.


25/40 Release Mechanism

All belts must join with a single metal-to-metal quick release lever type buckle.

No cam lock systems are allowed.

Figure 7-13 - Safety Harness - Correct

Figure 7-14 - Safety Harness – Not Correct Safety Harness Expiration

Safety belts can be no older than 2 (two) years, as indicated by the dates on the


7.6.2 Harness Attachment Points

The harness attachment points must be designed in accordance with sound

engineering practice. The lap belt and shoulder harness must be securely

mounted to the primary structure and not to the seat. In case the seat belt

straps need to be deviated between attachment points and pilot body this must

be done through a point on the vehicle structure. Deviations through seat points

shall be small and will be submitted to judgment. Acceptance lies at technical

inspector’s discretion. Shoulder belts must be looped around a frame tube as

per section and looped strap lateral movement shall be restricted so that

the requirements of item are met. (See Figure 7-15)

Figure 7-15 - Shoulder harness attachment points

7.6.3 Lap Belt

The lap belt must pass around the pelvic area below the Anterior Superior Iliac

Spines (the hip bones) (Figure 7-16). Under no condition may the lap belt be

worn over the area of the intestines or abdomen. The lap belts should come

through the seat at the bottom of the sides of the seat to maximize the wrap of

the pelvic surface and continue in a straight line to the anchorage point. In side

view, the lap belt must be at an angle of between 45 degrees and 65 degrees to

the horizontal. This means that the centerline of the lap belt at the seat bottom

should be approximately 76 mm (3 inches) forward of the seat back to seat

bottom junction (Figure 7-16). To fit drivers of differing statures correctly, in side

view, the lap belt must be capable of pivoting freely by using a shouldered bolt.

Mounting lap belts by wrapping them around frame tubes is not acceptable. The

lap belts should not be routed over the sides of the seat. (Figure 7-16).

Figure 7-16 - Harness Attachment Points

To avoid the excessive number of reworks observed on the last competitions,

the solution for the lap belt attachment has also been fixed. A metal tab 38.1

mm (1.5 inches) wide and 3 mm (0.12 inches) thick shall be looped around the

LFS at each attachment position and welded at both borders to the tube at the

whole perimeter. The belt shall be left free to pivot at the attachment point.

Figure 7-17 shows the construction details.



Figure 7-17 - Lap belt attachment points

7.6.4 Shoulder Belts Vertical Location

The shoulder belts must NOT be mounted above the shoulder level. They may

be mounted behind the firewall if additional protection is provided at the parts

exposed to the engine compartment and fuel tank. Shoulder belts must be no

more than 102 mm (4 in.) below the perpendicular from the spine to the seat

back at the shoulder level. Horizontal Location

The shoulder harness mounting points must be between 178 mm (7 inches) and

229 mm (9 inches) apart center to center (Figure 7-18). The mounting points

must use sound engineering practices. The straps shall not pass through

anything that will cause the center distance to be less than 178 mm (7 inches)

from center to center of the strap. The straps shall not pass over anything that

causes them to be more than 229 mm (9 inches) apart center to center.



Figure 7-18 - Shoulder harness mounting points

7.6.5 Belts – General

When adjusted, no part of the belt must project beyond the cockpit area, and

must not come into contact with rotating components of the chassis, or terrain

features. Loose ends of the belt must be restrained, but must not be wrapped

around the buckle in such a manner as to prevent proper operation. Both the

largest and smallest drivers on a team must meet these restraint requirements.

The shoulder belt adjusters/buckles must be adjusted so that they are

sufficiently clear of the webbing to permit further tightening by the safety

officials. The lap belt must be adjustable on each half of the buckle to permit

proper tightening for all drivers of the vehicle.

NOTE: If the belts do not have enough adjustment capacity the vehicle will be

pulled from the competition until the matter is corrected.

7.6.6 Arm Restraints

In the event of a rollover, the driver’s arms must be kept within the limits of the

cockpit. The cockpit is defined as the roll cage sides and the planes defined by

the roll hoop overhead members and the side impact members.

Arm restraints must be securely fastened to the driver restraint system.

Only commercially available arm restraints meeting SFI 3.3 are allowed. Arm Restraint – Installation

Arm restraints must be installed such that the driver can release them and exit

the vehicle unassisted regardless of the vehicle’s position. The arm restraint

must be worn by the driver on the forearm just below the elbow. The drivers

must be able to reach the cockpit kill switch and steering wheel but not allow

their arms to exit the cockpit.


30/40 Arm Restrain – Expiration

Arm restraints can be no older than 2 (two) years, as indicated by the dates on

the belts.

7.6.7 Installations - General

All installations must prevent accidental unfastening from either a direct pull,

rollover or slide along the side.


7.7.1 Foot Brake

The car must be equipped with a hydraulic braking system that acts on all

wheels and is operated by a single foot. No cables are allowed between pedal

and master cylinder. The brake system must be capable of locking ALL FOUR

wheels in a static condition and dynamically on pavement or an unpaved

surface. Effectiveness of braking system will be verified during the whole event.

If failures are detected the vehicle will be removed from the competition until the

problem is solved.

7.7.2 Independent Brake Circuits

The vehicle must have at least two (2) independent hydraulic systems such that

in case of a leak or failure at any point in the system, effective braking power

shall be maintained on at least two wheels. Each hydraulic system shall have its

own fluid reserve either through separate reservoirs or by the use of a dammed,

OEM-style reservoir. Plastic brake lines are not allowed.

7.7.3 Brake Light

The vehicle must be equipped with a brake light preferably marked with an SAE

“S” or “U” rating or if it is not rated as per SAE J759, it must be equal to or

exceed these standards. Teams must provide documentation to verify that the

light meets the required standards. Recognized original automotive parts may

be used. The determination of whether or not a brake light meets the required

standards rests with the National Technical Inspectors.

The brake light must be independent of the kill switch and remain operable at all


7.7.4 Brake(s) Location

The brake(s) on the driven axle must operate through the final drive. Inboard

braking through universal joints is permitted. Braking on a jackshaft or through

an intermediate reduction stage is prohibited.

7.7.5 Cutting Brakes

Hand or feet operated “cutting brakes” are permitted provided that section 7.7.1,

is also satisfied.




7.8.1 System Location

The entire fuel system must be located within the structural envelope such that

it is protected from impacts, including rollover. The tank mountings must be

designed to resist shaking loose.

7.8.2 Fuel Tank

Only a single fuel tank is permitted. Fuel tanks are restricted to the stock tank

provided by Briggs & Stratton. No holes are allowed in the tank even if they

have been repaired. Fuel Cap Check Valve

A check valve in the fuel cap that prevents fuel from leaking in a rollover or the

car being on its side is required. The check valve must be completely sealed to

the cap using an adhesive that does not breakdown in fuel. It is strongly

recommended the use of a standard Briggs and Stratton gas cap with a built in

check valve, Part # B4325GS. Otherwise the following check valves are

suggested: - Part # 47245K27 Nylon Check Valves - Part # 47149 HELP! Vacuum Check Valve

NOTE: Vent lines out of the tank are no longer allowed. Teams cannot add any

additional hole to the stock tank.

7.8.3 Fuel Lines

All fuel lines must be located away from sharp edges, hot engine components

and be protected from chafing. Grommets are required where the lines pass

through any member of the vehicle. Fuel lines are not allowed in the cockpit.

All lines must be approved for automotive use, attached securely and be no

larger than the stock lines supplied with the engine (i.e. ½” O.D. and ¼” I.D.). If

a fuel filter is used, it must be a Briggs and Stratton stock filter.

7.8.4 Spill Prevention

The fuel tank must be mounted so that no fuel can be spilled on the driver,

engine, ignition or exhaust during fueling. Complying with this rule will require a

drip pan that is at least 203.2 mm (8 inches) in diameter or equivalent area and

have sides of at least 38.1 mm (1.5 inches) high above the top edge of the tank.

The drip pan cannot be mounted straight to the tank around the fuel cap. The

fuel must be drain from the pan to the bottom of the car through a tube with a

minimum inner diameter of 6,35 mm (0.25 inches) (no pooling of the fuel

allowed). Splash Shields

Splash shields are required to prevent fuel from directly being poured on the

engine or exhaust; while refueling or preparing to refuel the car. The following is

an example of approved spill/splash shields:

Figure 7-19 - Acceptable spill/splash shields

The following is NOT acceptable:

Figure 7-20 - Not acceptable spill/splash shields


33/40 Filler Cap

The standard Briggs and Stratton caps do not prevent fuel from leaking in the

event of a rollover. The gasket inside the cap must be replaced with a gasket

that does not breakdown in fuel, does not have any holes and prevents fuel

from spilling. The cap must not come loose during dynamic events or allow fuel

to spill out.

7.8.5 Fuel

The only fuel permitted is a grade of automotive gasoline consisting of

hydrocarbon compounds. The gasoline may contain anti-oxidants, metal

deactivators, corrosion inhibitors, or lead alkyl compounds such as tetra-ethyl

lead. The addition of nitrogen bearing additives, or additives designed to

liberate oxygen is strictly prohibited.

Specific gravity should not exceed 0.75 for leaded gasoline or 0.80 for unleaded

gasoline when measured at 60 degrees Fahrenheit.

7.8.6 Fuel Containers

Attention: All fuel must be carried in, and put into vehicle fuel tanks, from

approved containers.

7.8.7 Refueling System

A refueling system that does not permit fuel leakage or spillage must be

developed and used during all refueling procedures. The proper functioning of

this system must be demonstrated during the Technical Inspection. (emenda 1,



7.9.1 Wheel Stops

Wheel stops are not anymore mandatory. They are considered however as

good design practice.

7.9.2 Tie Rod Protection

The tie rods of all vehicles must be protected from frontal impact. A bumper

may be required, at the technical inspector’s discretion, depending on the

design and installation.

7.9.3 Adjustable Tie Rod Ends

Adjustable tie rod ends must be constrained with a jam nut to prevent

loosening. After adjusted and fastened the tie rod shall be stiff.



7.9.4 Steering and suspension components integrity

Sound engineering practices shall be applied at the construction of steering and

suspension components. Use of welded parts should be avoided.

All parts will be inspected against fabrication quality, strength and functionality.

Reinforcement or repair may be required upon technical inspector’s discretion.


All threaded fasteners in the steering, suspension (lug nuts are exempt),

braking (caliper & master cylinder mounting and non OEM rotors & hub system)

accelerator and driver restraint systems must meet the following guidelines.

7.10.1 Locking Requirements

All threaded fasteners used in the systems designated in 7.10 must be captive;

defined as requiring NYLON locknuts, cottered nuts or safety wired bolts (in

blind applications). Lock washers or thread sealant do not meet this

requirement. Lock Wire Procedure Detail

EXAMPLE: A team using a custom hub with an OEM rotor must meet the

locking requirements, but a team using an OEM hub and OEM rotor would be

exempt. Figure 7-21 illustrates the procedure for using lock wire.

Figure 7-21 - Lock wire procedure detail

A. Above illustrations assume right hand threads.

B. No more than three (3) bolts may be safe-tied together.

C. Bolt heads may be safe-tied as shown only when the female thread receiver

is captive, or the nuts meet previous lock nut requirements.

D. Nuts (pre-drilled) may be safe-tied in similar fashion to the illustrations with

the following conditions:

1. Nuts are heat treated.

2. Nuts are “factory drilled” for use with lock wire.

E. Lock wire MUST fill a minimum of 75% of the drilled hole provided for the use

of lock wire.

F. Lock wire must be stainless steel of 0.020” Dia., 0.032” Dia., or 0.042” Dia.

Diameter of lock wire is determined by the thread size of the fastener to be


1. Thread sizes of ¼” and smaller use 0.020” wire.

2. Thread sized of ¼” to ½” use 0.032” wire.

3. Thread sizes > ½” use 0.042” wire.

4. The larger wire may be used in smaller bolts in cases of convenience,

but smaller wire must not be used in larger fastener sizes.

7.10.2 Fastener Grade Requirements

All bolts used in the systems designated in Section 7.10 must meet SAE grade

5, metric grade M8.8 or AN military specifications. See Figure 7-22 and Figure

7-23. Any threaded fastener components not shown compliance with those

requirements (including threaded rod) must have supporting documentation.

(For example, stock drivetrains, suspension components, steering and braking

or driver restraint systems.)

Figure 7-22 - Bolt head markings

Acceptable Military Specification Bolt Grades:



Figure 7-23 - Acceptable military specification bolt grades

7.10.3 Thread Exposure

All threaded fasteners must have at least two (2) threads showing past the nut.

7.10.4 Single Shear Connections

All ball joints or tie rods in single shear must have a factory steel safety washer.

OEM ball joints are the only exception. See Figure 7-24.

Figure 7-24 - Single and double shear connection

7.10.5 Ball Joints

Any commercially manufactured ball joints or rod ends with studs are allowed.

Student manufactured ball joints or rod ends with studs are specifically



7.11.1 Powertrain Guards

All rotating parts such as belts, chains, and sprockets that rotate at the rate of

the drive axle(s) or faster must be shielded to prevent injury to the driver or

bystanders should the component fly apart due to centrifugal force. These

guards/shields must extend around the periphery over any area that is in-line

toward the driver, bystanders, fuel tank, or fuel lines. At static ride height if the

guards come with in 30.4 cm (12inches) of the ground then the guard must only

pass the centerline of the rotating part. They must be mounted with sound

engineering practice, to resist vibration. They must be either:

(a) made of 1010 steel at least 1.524 mm (0.06 inch) thick or;

(b) a material having equivalent energy absorption at rupture. Due to common

construction issues, alternative material parts shall be twice as thick (2 x 1.524

mm). Equivalency demonstration methods accepted are impact energy

absorption tests (Charpy, Izod …). Side Shields

Side shields must prevent fingers from getting caught in any rotating part. A

complete cover around the engine and drive train will be acceptable.


Figure 7-25 - Powertrain guards

7.11.2 Factory Stock Guards

Factory stock guards must be demonstrated to be equal to those described in

this section (Polaris CVT cover is allowed).

7.12.1 Helmet, Neck Support/Collar & Goggles

All drivers must wear a well-fitting Motor-Cross style safety helmet with an

integrated (one-piece composite shell) chin/face guard and a Snell M2000,

SA2000, or British Standards Institution BS 6658-85 types A or A/FR rating.

Brazilian INMETRO approved helmets are allowed, if provided with valid

approval stamp. Goggles must incorporate the use of tear-offs or roll-off

systems for muddy conditions.

Motor-Cross Style No Street Bike Style Helmets

Figure 7-26 - Driver Helmets

In addition to the helmet, a neck support/collar must be worn. The neck support

must be a full circle (360°) and SFI 3.3 rated not a horseshoe collar. Simpson,

RCI, GForce, Deist or Leaf Racing Products supply neck collars that meet this

requirement. Neck braces can be no older than 3 years old, as indicated by the

dates on the brace.

Figure 7-27 – Driver neck support

WARNING: Some Motor-Cross helmets have extended chin guards that will not

contact the required neck collars when the head is flexed forward. This

combination of helmet/collar system is prohibited.

Any non-specification helmets will be confiscated until after the competition.

This rule has no exceptions and it will be strictly enforced. Helmets certified to

other rating systems may not be worn.

7.12.2 Clothing

Drivers must wear appropriate clothing, including long pants, socks, shoes,

gloves, and a long sleeved upper garment. Clothing material shall be resistant

to fire (cotton, Nomex, etc.), preferably SFI or FIA rated.


Os requisitos de projeto a seguir se aplicam à "Competição Baja SAE

BRASIL ". O design e as normas técnicas serão aplicadas rigorosamente. É a responsabilidade de cada equipe para atender todos os requisitos técnicos usando os seus princípios de engenharia e construção fabricação de reunião feito adequada procedimentos. Não fazer isso pode significar desclassificação da competição; resto julgamento final com a Inspecção Técnica Nacional. Veículos apresentando características de design especial, que são julgados de comprometer a segurança e não são matéria desta seção, serão submetidos à avaliação e aceitação será no critério do Conselho Nacional de Inspecção Técnica. Se você tem alguma dúvida sobre qualquer requisito técnico, envie suas perguntas para o forum oficial sobre SAE Brasil site ( Nacional Inspetores técnicos farão o seu melhor para responder a essas perguntas dentro de dois semanas. Por favor inclua o seu nome, escola, e o número da regra em questão.
7.3.1 Requisitos de regras e restrições Inspeção Técnica

Todos os veículos SAE Baja deve passar por uma inspeção técnica antes de terem permissão para competir. Uma vez que um veículo tenha passado pela inspeção técnica deve permanecem em "aprovado" condição durante toda a competição. Reparos devem ser feita com peças idênticas. Não observar essas regras pode significar a desqualificação

da concorrência; resto julgamento final com a Inspeção Técnica nacional. modificações necessárias

Todas as instalações e construção estão sujeitas à aprovação do Conselho Nacional de Inspetores técnicos, que podem exigir modificações a seu critério. Todos concorrentes devem estar preparados para observar essas modificações durante a técnica inspeções.

REGULAMENTO BAJA SAE BRASIL - CAPÍTULO 7 nível de segurança equivalente (ELOS)

Determinação da ELOS é o princípio usado para aceitar configurações alternativas que pode não atender rigorosamente um ou mais requisitos de segurança, mas apresenta uma equivalente, ou superior ao nível de segurança pretendido pelo requisito de segurança.

Inspetores de Segurança só pode determinar um ELOS, que deve ser fundamentada por dados de engenharia, tais como análises, ensaios, provas teóricas ou mesmo julgamento de engenharia.

Determinação da ELOS também pode ser feita por inspectores de segurança a aceitar menores discrepâncias sem verificar novamente ou outras modificações no veículo.

As equipes são encorajados a apresentar e discutir qualquer proposta com a ELOS Inspetores de segurança antes da competição. (Emenda 2, 01/Fev/2011) Veículos Unsafe

Qualquer veículo exibindo manipulação ou dinâmica de outro veículo que são considerados inseguros ou instáveis pelos inspetores técnicos não serão autorizados a participar dos eventos dinâmicos. As respostas dinâmicas do veículo vão ser verificados durante o evento conforto, segurança e aceleração vão ser observados durante toda a competição. (Emenda 2, 01/Fev/2011)

7,4 gaiola

7.4.1 Objetivo

A finalidade da gaiola é proporcionar um espaço tridimensional mínimo

em torno do motorista e passageiro. A gaiola deve ser concebida e fabricada de forma a evitar qualquer falha de sua integridade. A gaiola deve ser grande o suficiente para:

1.) Capacete do condutor a ser 15,24 cm (6 polegadas) de distância de uma régua aplicado a qualquer dois pontos no cockpit do carro, além do lugar do condutor e a segurança do motorista traseira suporta.

2.) Torso do condutor, joelhos, ombros, cotovelos, mãos e braços devem ter uma mínima de 7,62 cm (3 pol) de distância do envelope criado pelo

estrutura do carro (Isto foi testado através da aplicação de uma borda em linha reta entre quaisquer dois pontos nas bordas exteriores do SIM e RHO, menos o estofamento gaiola)

7.4.2 Requisitos Gaiola Rolo Elementos da gaiola

Os elementos da gaiola que deve atender a especificação de material por 7.4.4 são:

Rolo traseiro Hoop Rule (RRH)

Rolo membros Hoop Overhead (RHO) Regra

Membros inferiores Quadro Side (LFS) Regra

Frente membros Órtese (FBM) Regra

Cruz membro lateral (LC) ou (FLC)

Qualquer parte em que os cintos de segurança estão ligados.

Membros adicionais listados abaixo são necessários:

Lateral Órtese Diagonal (LDB) Regra

Side Impact membros (SIM) Regra

Sob a Regra assento membro (USM)

Fore-Aft membros Órtese Rule (FAB)

Traseiros laterais travessa Rule (RLC)

(Emenda 2, 01/Fev/2011)

Estes membros adicionais devem ser de aço e são obrigados a ter apenas

espessura mínima de 0,89 milímetros (0,035 in) e diâmetro externo mínimo de 25,4 mm (1,0 polegada).

Pontos de referência: Veja os desenhos nesta seção.

NOTA 1: Quando as dimensões mínimas são dadas de que é a linha central do

membros, e quando uma folga para o motorista é dado, é definido pela

bordas externas dos membros gaiola menos o estofamento instalado.

NOTA 2: Todos os membros da gaiola do rolo tendo um raio de curvatura maior do que 15,2 centímetros (6 polegadas) não poderá ser superior a 71,1 centímetros (28 polegadas) sem suporte.

DEFINIÇÃO: Driver - Para os efeitos desta seção "driver" refere-se ao

maior piloto da equipe e do macho de percentil 95 devidamente adaptado e usando um capacete. Hoop rolo traseiro (RRH)

O RRH é composta por um máximo de quatro seções, duas LC em alta e

pontos mais baixos, e dois contínua, sem pausa membros vertical; este pode ser um contínua hoop / tubo. Banco do motorista não pode intrometer-se no plano da RRH. (Esta verificação deve ser feita considerando-se a deformação máxima do assento estrutura especialmente em casos em que o assento é integrado à estrutura). O

junções superior na construção tubo reto deve definir os pontos de BR e BL. Se construção de tubo dobrado é usado, pontos BR e BL irá ocorrer na extremidade superior da cada curva. (Veja a Figura 7-1) O RRH deve estender-se verticalmente para cima + / - 20 graus do ponto A a B. A RRH pontos também devem ser um mínimo de 73,6 cm (29 pol) em 68,6 centímetros (27 pol) acima do assento do condutor (Verificado por


Figura 7-1 - RC1 traseiro rolo Hoop Lateral Órtese Diagonal (LDB)

Fortificações para a Hoop rolo traseiro começará em um ponto ao longo da vertical parte do RRH dentro 12,7 centímetros (5 polegadas) na vertical do ponto BL ou BR e estendem diagonalmente para um ponto mais longe do que 12,7 centímetros (5 polegadas) acima do ponto de AR ou AL, respectivamente. (Veja a Figura 7-2) O ângulo vertical entre o RRH e

a LDB não deve ser inferior a 20 graus. Contraventamento lateral pode consistir em um, dois ou mais membros.

Figura 7-2 - RC2

A Figura 7-3 mostra soluções de contraventamento que não atendem os requisitos.

Figura 7-3 - órteses que não atendem aos requisitos rolo Hoop Overhead membros (RHO)

Membros Overhead rolo Hoop deve se juntar ao RRH dentro de 5,1 cm (2 polegadas) verticalmente ou lateralmente de pontos B e estender geralmente horizontal a pontos C. A RHO deve situar-se acima do assento do motorista por um mínimo de 104,1 cm (41 polegadas). C pontos devem estar localizados a frente do banco do motorista por um mínimo de

30,5 cm (12 polegadas) conforme definidos no ponto 7.4.3. (Veja a Figura 7-4)

Pontos CR e CL devem ser ligados por uma travessa lateral (LC) (Ver Figura 7 -5)

Nota: RHO e FBM (ver secção Os membros são obrigados a ser

construída em uma peça única e contínua conectando pontos B e SF com uma curvaturano ponto C.

Figura 7-4 - RC3 (Emenda 2, 01/Fev/2011) membros inferiores Quadro Side (LFS)

Membros inferiores quadro lateral deve se juntar ao RRH inferior e LC e se estendem até pontos à frente do calcanhar do motorista para uma travessa frontal lateral. (FLC) (Ver Figura 7-5)

Figura 7-5 - RC4 (Emenda 2, 01/Fev/2011) Side Impact membros (SIM)

Membros de impacto lateral deve se juntar ao RRH nos pontos S e estender geral horizontal de pontos SF frente dos dedos do pé do motorista. (Veja a Figura 7-5) O SIM

deve estar entre 20,3 cm (8 polegadas) e 35,6 cm (14 polegadas) (medida

verticalmente) acima do ponto mais baixo no assento em contato com o motorista. (Veja Figura 7-4)

NOTA: Os pés do condutor deve estar por trás do plano criado por pontos AFR, L e SFR, L. A laterais travessa LC é necessária entre SFR, L. Se o tubo entre SFR, L está abaixo dos pés do motorista, em seguida, uma barra adicional será necessário acima dos pés do condutor (A intenção desta é proteger os pés do motorista de uma intrusão do pneu ). De acordo com membros do assento (USM)

Um membro sob assento (USM) devem juntar-se ambos os membros do LFS em um local apenas abaixo do motorista quando o modelo cruza o fundo do banco, conforme Figura 7 -

4. A tolerância de 5,1 cm (2 polegadas) pode ser aplicada, mas só para a frente desse ponto.

Ela deve ser posicionada de tal forma a impedir que o driver de passar por o plano do LFS em caso de falha do banco. (Emenda 2, 01/Fev/2011) Frente membros Órtese (FBM)

Frente membros órtese deve se juntar ao RHO, o SIM eo LFS. (Ver Figura 7 -6) A Frente superior Órtese membros (FBMUP) deve estender-se para baixo e frente e junte-se pontos C no RHO para o SIM ou atrás de pontos no SF (Recomendado max. 5,1 cm (2 polegadas) por trás). Observe também a nota no item

O ângulo entre o FBMUP e o vertical deve ser inferior a 45 graus.

(Emenda 2, 01/Fev/2011)

Figura 7-6 - RC5 Fore-Aft membros Órtese (FAB)

Fore Aft-membros contraventamento devem ser fornecidos para a jaula usando um dos métodos definidos abaixo. Independentemente do uso da órtese escolha do sistema, se for o caso, o compartimento do motor completo, incluindo o tanque de combustível deve ser envolvido por gaiola elementos estruturais. (Emenda 2, 01/Fev/2011) Frente Fore Aft-Órtese

FABUP frente deve estender-se geralmente para baixo a partir de pontos D e junte-se a FBMUP

para o SIM em pontos E. O ângulo entre a Frente eo FABUP FBMUP deve

ser de pelo menos 30 graus. (Veja a Figura 7-7).

Figura 7-7 - RC6 FABLWR frente deve se juntar pontos E e do LFS (Veja a Figura 7-7). O ângulo entre a Frente eo FABUP FABLWR Frente não deve ser superior a 15 graus em uma vista lateral. Se dois membros FABLWR são necessários, o ângulo entre os dois membros não deve ser superior a 90 graus. (Veja a Figura 7-8).

(Emenda 2, 01/Fev/2011)

Figura 7-8 - RC7 Órtese Traseira

A partir de uma visão lateral (veja a Figura 7-9) a construção deve ser inteiramente de triângulos contíguos, não com o comprimento máximo de qualquer membro de exceder 81,3 centímetros (32 polegadas) entre pontos de fixação. Ângulo mínimo entre qualquer membros do triângulo será de 25 dg. Se os tubos dobrados são usados ​​como membros triângulos, não deve exceder 71,1 centímetros (28 polegadas). Apenas raios contínuos serão aceitos.

Preparando traseira devem incluir pelo FABUp por um mínimo, um FABMid (a geral cinta horizontal de cada lado ou ligar FABUp FABLwr ao RRH, em + / - 5,1 centímetros (2 polegadas) a partir do ponto S), e um FABLower. Além disso, pelo menos, uma linha reta travessa traseira lateral (RLC) deve conectar os lados esquerdo e direito da preparando traseiro, presa dentro de 38,1 centímetros (15 polegadas) do centro do exterior perímetro (como visto de lado) de órtese traseira. (Veja a Figura 7-9).

Preparando traseira deve anexar dentro 5,1 cm (2 polegadas) de Br e Bl, e estender para trás além de todos os componentes do motor. O menor membro (FABLwr) deve conectar dentro de 5,1 cm (2 polegadas) max. do ponto A para a RRH. Quanto menor o anexos (abaixo e Sr Sl) deve ser ligado diretamente ao RRH (pode não ser interior). (Veja a Figura 7-9).

Figura 7-9 - Órtese Traseira

NOTA: As equipes estão autorizados a aplicar parte traseira preparando soluções com maior tolerâncias para anexos aos pontos S e A (superior a 5,1 centímetros - 2 polegadas), desde que possa ser demonstrada quer pela análise ou teste em uma base comparativa que a estrutura proposta superior ou equivalente presentes nível de segurança ao exigido por esta regra. Um relatório de comprovação será apresentado em anexo à Folha de Especificação rolo Cage e sua aprovação será no critério do Nacional da Inspeção Técnica. (Emenda 2, 01/Fev/2011) Juízo Final

As regras são consideradas um mínimo, mas o julgamento final caberá aos Inspetores Técnica Nacional. Se durante o evento, qualquer quadro mostra sinais de rendimento e / ou falha, o carro será removido da competição até que o técnico inspetores confirmam que o quadro está em conformidade com as regras novamente.

COMENTÁRIO: Observe que em todos os casos, especialmente em tubos dobrados ou interrompido construções, os inspetores técnicos podem exigir estimulante adicional se sentem a gaiola não oferecem proteção adequada. Todos os tubos mostrando deformações procedimentos de construção de flexão, rachaduras ou sinais de soldagem ruins

condições, não cumprir as regras. (Emenda 2, 01/Fev/2011)

7.4.3 Apuramento Cabeça driver

Para o apuramento cabeça motorista, o gaiola deve estender-se um mínimo de 104,1 centímetros (41 polegadas) acima do ponto de contacto menor de assento (superfície) para o fundo do tubos da gaiola superior rolo medida verticalmente usando o modelo na Figura 7-10.

O modelo bottom raios deve ser colocado na articulação da base do assento e o encosto do banco e posicionado verticalmente. O modelo "T" top descreve o projeção da frente necessários clearance altura e para trás. Enquanto o modelo de correções a altura de apuramento para a frente, para trás a altura livre devem ser prorrogado em cada projeto ao longo do topo do capacete de um piloto sentado e seguro.

Motoristas mais altos podem ser acomodados pelo alongamento do modelo verticais

membro e aumentando o envelope altura total acima do clearance 104,1 centímetros (41 polegadas) no mínimo. Apuramento Cabeça - Mínimo

Em todos os casos, um mínimo de 15,2 cm (6 polegadas) Distância vertical deve ser fornecidas a partir do topo do capacete do piloto mais alto da equipe até o fundo do rolo tubos de topo de gaiola ou membros.

Figura 7-10 - Design gaiola

7.4.4 gaiola e Materiais de Órtese

O material usado para toda membros rolo gaiola necessários especificados no (RRH, RHO, LFS, FBM, LC, FLC e qualquer parte em que os cintos de segurança são em anexo) deve, no mínimo, ser:

(A) tubos de aço circular com um diâmetro externo de 25,4 mm (1 polegada) e uma parede espessura de 3,05 mm (0,120 polegada) e um teor de carbono de pelo menos 0,18%.

Ou (B) os membros de aço com, pelo menos, igual a rigidez de flexão e resistência à flexão para o tubo especificado no item (a) acima, desde que a espessura da parede é igual ou maior do que 1,57 milímetros (0,062 polegadas).

NOTA: O uso de ligas de aço não permite que a espessura da parede a ser mais fino de 1,57 milímetro (0,062 polegada).

A rigidez de flexão e resistência à flexão têm de ser calculados sobre um eixo que dá o valor mais baixo. Flexão rigidez é proporcional pelo produto EI e resistência à flexão é dada pelo valor de SYI / c, (para 1018 os valores de aço são; Sy = 370 MPa (53,7 ksi) E = 205 GPa (29700 ksi).

E = módulo de elasticidade;


I = o segundo momento de área para a seção transversal sobre o eixo que dá a menor valor;

Sy = a resistência ao escoamento de material em unidades de força por unidade de área;

c = a distância do eixo neutro à fibra extrema.

NOTA: As equipes são obrigadas a apresentar o cálculo da rigidez de flexão e flexão força para o tubo utilizado. Esta análise, incluindo todos os dados solicitados na seção, deve ser anexado à ficha de especificações rolo Cage (Veja ANEXO 7-1).

GAIOLAS NÃO SÃO PROIBIDAS DE AÇO ROLO Rolo Folha de Especificação de Cage

Todas as equipes devem trazer uma cópia do rolo SAE Baja Folha de Especificação de Cage

(Veja ANEXO 7-1) para a Inspeção Técnica Nacional durante inspeções técnicas. Especificações completas rolo gaiola deve ser fornecido com o rolo Gaiola Folha de Especificação. As equipes que não apresentarem uma especificação de gaiola Folha não será autorizado a competir. Padding gaiola

Qualquer parte do roll bar, preparando-roll bar, SIM, ou quadro (excluindo RRH)

entre as juntas de solda que seria contactado pelo condutor, deve ser

coberto por um material resiliente, tais como polietileno ® (isolamento de tubos) ou outros

material similar, com uma espessura mínima de 12 mm (0,5 polegadas). Todas as juntas soldadas

devem ser claras de preenchimento de 2,5 cm (1 in) ao longo de cada tubo para permitir a inspecção

da solda. apoio de cabeça

Um apoio de cabeça deve ser fornecido no carro para limitar o movimento para trás do

cabeça em caso de acidente. A contenção deve ter uma área mínima de 232 m²

cm (36 polegadas quadradas), ser acolchoada, com um material de energia não elástica, absorvendo

como Ethafoam ® ou Ensolite. Deve haver uma espessura mínima de 3,8

cm (1,5 polegadas), e ser localizado a mais de 2,5 cm (1 polegada) de distância da

capacete no estado não comprimido. O apoio de cabeça deve atender aos acima

requisitos para todos os motoristas.

Posicionamento da cabeça pad de retenção devem ter em conta o ponto de contacto do capacete

viagens durante a operação. orifícios de inspecção

Os Inspetores Técnica Nacional irá instruir os alunos onde perfurar dois

4.5mm (0,18 polegadas) de diâmetro buracos durante a inspeção técnica inicial. arestas sobre gaiola - Proibido

Todas as arestas vivas que possam pôr em perigo o condutor, tripulantes, funcionários e agentes de segurança

devem ser eliminadas por radiusing, blindagem e / ou estofamento. Isso inclui

suportes, reforços, o estoque da folha, termina fecho, grampos, "tie-raps" ou outros

recursos acessíveis durante a manutenção, a julgar ou competição impacto ou roll over. Materiais - Documentação

As equipes são obrigadas a trazer com eles a documentação (notas fiscais, contas, etc) de os materiais utilizados na gaiola e órtese. As equipes devem dar a este

informações como um anexo a Folha de Especificação rolo Cage.

7.4.5 rolo Gaiolas parafusada

Gaiolas parafusadas rolo só são aceitáveis ​​se os seguintes requisitos forem atendidos:

a) Flanges ou guias devem ser o dobro (2X) a espessura das estruturas do tubo,

feita do mesmo material do tipo. Eles devem ser devidamente soldada a cada tubo

Compartilhe com seus amigos:
1   2   3   4   5

© 2017
enviar mensagem

    Página principal